
SMPS Control Library Help

Copyright (c) 2013 Microchip Technology Inc. All rights reserved.

Table of Contents

1 SMPS Control Library 1-1

SMPS Control Library Help

 ii

1 SMPS Control Library

Files

Name Description

smps_control.h This header file lists the interfaces used by the Switch Mode Power Supply
compensator library.

Description

1 SMPS Control Library Help

 1-1

1

1.1 Introduction
SMPS Control Library

for

Microchip Microcontrollers

This library is a collection of optimized controller functions commonly used in Switch Mode Power Supply (SMPS)
applications.

Description

The SMPS Control library contains function blocks that are optimized for the dsPIC33F and dsPIC33E family of Digital Signal
Controllers (DSC). The library functions are designed to be used within an application framework for realizing an efficient
and flexible way of implementing the control of an SMPS application.

The block diagram in Figure-1 shows a typical usage scenario. The user-developed SMPS application interfaces to the DSC
peripherals while using function calls into this library to perform majority of the time-critical operations.

Figure-1: Block diagram of a typical library usage scenario.

1.1 Introduction SMPS Control Library Help

 1-2

1

1.2 Release Notes
SMPS Control Library Version : 0.10 Release Date: December 11th, 2013

New:

This is the first release of the library. The interface can change in the beta and\or 1.0 release.

Changes:

None.

Fixes:

None.

Known Issues:

None.

Development Tools:

This version of the library is tested to be compatible with the following:

• XC16 v1.11 compiler (only)

• MPLAB X IDE v1.90 and later

Performance and functional correctness of the library cannot be guaranteed if this version of the library is used with versions
of the development tools other than those listed above.

1.2 Release Notes SMPS Control Library Help

 1-3

1

1.3 SW License Agreement
(c) 2013 Microchip Technology Inc.

Microchip licenses this software to you solely for use with Microchip products. The software is owned by Microchip and its
licensors, and is protected under applicable copyright laws. All rights reserved.

SOFTWARE IS PROVIDED "AS IS" MICROCHIP EXPRESSLY DISCLAIMS ANY WARRANTY OF ANY KIND, WHETHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL MICROCHIP BE LIABLE
FOR ANY INCIDENTAL, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA,
HARM TO YOUR EQUIPMENT, COST OF PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY OR SERVICES,
ANY CLAIMS BY THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE THEREOF), ANY CLAIMS FOR
INDEMNITY OR CONTRIBUTION, OR OTHER SIMILAR COSTS.

To the fullest extent allowed by law, Microchip and its licensors liability shall not exceed the amount of fees, if any, that you
have paid directly to Microchip to use this software.

MICROCHIP PROVIDES THIS SOFTWARE CONDITIONALLY UPON YOUR ACCEPTANCE OF THESE TERMS.

1.3 SW License Agreement SMPS Control Library Help

 1-4

1

1.4 Library Overview
This topic describes the basic architecture of the SMPS Control Library and provides information and examples on how to
use it.

The SMPS Control Library hosts functions as defined in the Interface Header File.

Interface Header File: smps_control.h

The interfaces to the SMPS Control library are defined in the "smps_control.h" header file. Any C language source (.c) file
that uses the SMPS Control library should include the "smps_control.h".

Library Files: libsmps_control_dspic33f-elf.a

The SMPS Control library archive (.a) files installed with the library release. The prototypes for library functions hosted by the
archive files are described in the smps_control.h file. Both of these archive files released with the library are built using the
ELF-type of Object Module Format (OMF).

1.4.1 Library Sections

The library interface routines for each of the controllers is divided into two sub-sections. Each sub-section addresses one of
the classes of operation in the SMPS Control library.

Library Interface Section Description

Controller Initialization This function clears the controller data structure arrays

Controller Implementation This function calls the Digital controller

1.4.2 Library Usage Model

This topic describes the typical usage model for this library.

In order to use the library in the user application:

1. Include the library archive file into the application project. Add the library archive directory into the Project Properties ->
xc16-ld -> (Option categories) Libraries field as shown below.

1.4 Library Overview SMPS Control Library Help Library Usage Model

 1-5

1

2. Ensure that the application project is configured to use ELF/DWARF type of output file format.

3. Include the smps_control.h file in all C language source (.c) file that use the SMPS Control library.

 #include "smps_control.h"

4. Add the library path to the C include directory field in Project Properties -> xc16-gcc -> (Option categories) Preprocessing
and messages -> C include dirs.

1.4 Library Overview SMPS Control Library Help Library Usage Model

 1-6

1

1.4.3 Using the 3P3Z Controller

The 3P3Z controller is the digital implementation of the analog type III controller. This is a filter which generates a
compensator characteristic considering three poles and three zeros. This controller requires four feedback error multiplied by
their associated coefficients plus the three latest controller output values multiplied by their associated coefficients along the
delay line to provide proper compensation of the power converter. The coefficients are determined externally using
simulation tools.

Three Pole Three Zero (3P3Z) - Controller:

This controller was designed with a good trade-off between speed and accuracy

Filename Description:

SMPS_Controller3P3Z stands for Switch Mode Power Supply 3-pole 3-zero controller. The coefficients can cover a wide
range of numbers depending on the performance requirements for the system or plant. This controller was programmed to
work with Q15 numbers only, therefore the coefficients have to be normalized to the range between -1 and +1 before
implementation.

File Usage:

1) Variable Declarations

To use this controller in an application, one or more controller(s) can be defined as following:

- Include stdint.h for declaration in the 16-bit integer format

#include <stdint.h>

- Declare a 3P3Z Data Structure (e.g. controller3P3Z)

SMPS_3P3Z_T controller3P3Z;

The controller3P3Z data structure contains a pointer to derived coefficients in X-space and pointer to controller and error

1.4 Library Overview SMPS Control Library Help Using the 3P3Z Controller

 1-7

1

history in Y-space. So declare variables for the derived coefficients and the controller history samples, this can be done in
main.h

int16_t controller3P3ZACoefficient[3] __attribute__ ((section (".xbss")));

int16_t controller3P3ZControlHistory[3] __attribute__ ((section (".ybss")));

int16_t controller3P3ZBCoefficient[4] __attribute__ ((section (".xbss")));

int16_t controller3P3ZErrorHistory[4] __attribute__ ((section (".ybss")));

2) Controller Initialization

Before the controller can be used, it has to be initialized. First, the data structure has to be filled by copying the pointers to
the coefficients, error and controller history arrays into the structure, in addition the physical clamping limits of the output
value need to be defined, for example:

controller3P3Z.aCoefficients = &controller3P3ZACoefficient[0]; // Set up pointer to derived coefficients

controller3P3Z.bCoefficients = &controller3P3ZBCoefficient[0]; // Set up pointer to derived coefficients

controller3P3Z.controlHistory = &controller3P3ZControlHistory[0]; // Set up pointer to controller history

controller3P3Z.errorHistory = &controller3P3ZErrorHistory[0]; // Set up pointer to error history

controller3P3Z.preShift = (e.g. 5); // Normalization shift for error amplifier into Q15 format

controller3P3Z.postShift = (e.g. 1); // Normalization shift for control loop results to peripheral

controller3P3Z.postScaler = (e.g. 2); // Normalization shift for control loop results to peripheral

controller3P3Z.minOutput = (e.g. min duty cycle); // Clamp value for minimum duty ratio

controller3P3Z.maxOutput = (e.g. max duty cycle); // Clamp value for maximum duty ratio

It's recommended to clean up the error-history and controller-history arrays before start-up using the following instruction:

SMPS_Controller3P3ZInitialize(&controller3P3Z); // Clear history

3) Calling the Controller

As soon as the coefficients have been loaded into their arrays, the controller can be called using the following instruction:

SMPS_Controller3P3ZUpdate(&controller3P3Z,&ADCBUF0,controlReference,&PDC1)

This function call includes the pointer to the controller data structure, pointer of the input source register, control reference
value, and to the pointer to the output register.

CONTROL LOOP DEFINITIONS

 Transfer Function for a Digital 3P3Z Controller

| u(z) B0 + B1 z^(-1) + B2 z^(-2) + B3 z^(-3) |
| H(z) = ---- = -- |
e(z) -A3 z^(-3) - A2 z^(-2) - A1 z^(-1) + 1
The Linear Difference Equation becomes:
--
| u(n) = B0 e(n) + B1 e(n-1) + B2 e(n-2) + B3 e(n-3) + |
A1 u(n-1) + A2 u(n-2) + A3 u(n-3)

The SMPS_3P3Z_T data structure contains a pointer to derived coefficients in X-space and pointer to error/control history
samples in Y-space. So declare variables for the derived coefficients and the error history samples.

The abCoefficients referenced by the SMPS_3P3Z_T data structure are derived from the coefficients B0-B3 plus A1-A3.
These will be declared in external arrays. The SMPS_3P3Z_T data structure just holds pointers to these arrays.

The coefficients will be determined by simulation tools, which output is given as floating point numbers. These numbers will
be copied into the declared arrays after they have been converted into 16-bit integer numbers.

1.4 Library Overview SMPS Control Library Help Using the 2P2Z Controller

 1-8

1

1.4.4 Using the 2P2Z Controller

The 2P2Z controller is the digital implementation of the analog type II controller. This is a filter which generates a
compensator characteristic considering two poles and two zeros. This controller requires three feedback error multiplied by
their associated coefficients plus the two latest controller output values multiplied by their associated coefficients along the
delay line to provide proper compensation of the power converter. The coefficients are determined externally using
simulation tools.

Two-Pole Two-Zero (2P2Z) - Controller:

This controller was designed with a good trade-off between speed and accuracy

Filename Description:

SMPS_Controller2P2Z stand for Switch Mode Power Supply 2-pole 2-zero controller. The coefficients can cover a wide
range of numbers depending on the performance requirements for the system or plant. This controller was programmed to
work with Q15 numbers only, therefore the coefficients have to be normalized to the range between -1 and +1 before
implementation.

File Usage:

1) Variable Declarations

To use this controller in an application, one or more controller(s) can be defined as following:

- Include stdint.h for declaration in the 16-bit integer format

#include <stdint.h>

- Declare a 2P2Z Data Structure (e.g. controller2P2Z)

SMPS_2P2Z_T controller2P2Z;

The controller2P2Z data structure contains a pointer to derived coefficients in X-space and pointer to controller and error
history in Y-space. So declare variables for the derived coefficients and the controller history samples, this can be done in
main.h

int16_t controller2P2ZACoefficient[2] __attribute__ ((section (".xbss")));

int16_t controller2P2ZControlHistory[2] __attribute__ ((section (".ybss")));

int16_t controller2P2ZBCoefficient[3] __attribute__ ((section (".xbss")));

int16_t controller2P2ZErrorHistory[3] __attribute__ ((section (".ybss")));

2) Controller Initialization

Before the controller can be used, it has to be initialized. First, the data structure has to be filled by copying the pointers to
the coefficients, error and controller history arrays into the structure, in addition the physical clamping limits of the output
value need to be defined, for example:

controller2P2Z.aCoefficients = &controller2P2ZACoefficient[0]; // Set up pointer to derived coefficients

controller2P2Z.bCoefficients = &controller2P2ZBCoefficient[0]; // Set up pointer to derived coefficients

controller2P2Z.controlHistory = &controller2P2ZControlHistory[0]; // Set up pointer to controller history

controller2P2Z.errorHistory = &controller2P2ZErrorHistory[0]; // Set up pointer to error history

controller2P2Z.preShift = (e.g. 5); // Normalization shift for error amplifier into Q15 format

controller2P2Z.postShift = (e.g. 1); // Normalization shift for control loop results to peripheral

controller2P2Z.postScaler = (e.g. 2); // Normalization shift for control loop results to peripheral

controller2P2Z.minOutput = (e.g. min duty cycle); // Clamp value for minimum duty ratio

1.4 Library Overview SMPS Control Library Help Using the 2P2Z Controller

 1-9

1

controller2P2Z.maxOutput = (e.g. max duty cycle); // Clamp value for maximum duty ratio

It's recommended to clean up the error-history and controller-history arrays before start-up using the following instruction:

SMPS_Controller2P2ZInitialize(&controller2P2Z); // Clear history

3) Calling the Controller

As soon as the coefficients have been loaded into their arrays, the controller can be called using the following instruction:

SMPS_Controller2P2ZUpdate(&controller2P2Z,&ADCBUF0,controlReference,&PDC1)

This function call includes the pointer to the controller data structure, pointer of the input source register, control reference
value, and to the pointer to the output register.

CONTROL LOOP DEFINITIONS

 Transfer Function for a Digital 2P2Z Controller
 --
| u(z) B0 + B1 z^(-1) + B2 z^(-2) |
| H(z) = ---- = ---------------------------- |
e(z) - A2 z^(-2) - A1 z^(-1) + 1
 The Linear Difference Equation becomes:

u(n) = B0 e(n) + B1 e(n-1) + B2 e(n-2) + A1 u(n-1) + A2 u(n-2)

The SMPS_2P2Z_T data structure contains a pointer to derived coefficients in X-space and pointer to error/control history
samples in Y-space. So declare variables for the derived coefficients and the error history samples.

The abCoefficients referenced by the SMPS_2P2Z_T data structure are derived from the coefficients B0-B2 plus A1-A2.
These will be declared in external arrays. The SMPS_2P2Z_T data structure just holds pointers to these arrays.

The coefficients will be determined by simulation tools, which output is given as floating point numbers. These numbers will
be copied into the declared arrays after they have been converted into 16-bit integer numbers.

1.4.5 Using the PID Controller

The digital implementation of a PID controller is a filter which generates a compensator characteristic considering the values
of the coefficients KA, KB, KC these coefficients will determine the converter's frequency response. These coefficients are
determined externally using simulation tools.

Filename Description:

SMPS_ControllerPID stands for Proportional Integral Derivative controller for switch mode power supply. This controller was
programmed to operate using Q15 numbers only. Therefore the coefficients have to be normalized to the range between -1
and +1 before implementation.

File Usage:

1) Variable Declarations

To use this controller in an application, one or more controller(s) can be defined as following:

- Include stdint.h for declaration in the 16-bit integer format (int16_t)

#include <stdint.h>

- Declare a PID Data Structure (e.g. controllerPID)

SMPS_PID_T controllerPID;

The SMPS_PID_T data structure contains a pointer to derived coefficients in X-space and pointer to controller and error
history in Y-space. So declare variables for the derived coefficients and the controller history samples, this can be done in
main.h

1.4 Library Overview SMPS Control Library Help Using the PID Controller

 1-10

1

int16_t controllerPIDCoefficientABC[3] __attribute__ ((section (".xbss")));

int16_t controllerPIDControlHistory[1] __attribute__ ((section (".ybss")));

int16_t controllerPIDErrorHistory[3] __attribute__ ((section (".ybss")));

2) Controller Initialization

Before the controller can be used, it has to be initialized. First, the data structure has to be filled by copying the pointers to
the coefficients, error and controller history arrays into the structure, in addition the physical clamping limits of the output
value need to be defined, for example:

controllerPID.abcCoefficients = &controllerPIDCoefficientABC[0]; // Set up pointer to derived coefficients

controllerPID.controlHistory = &controllerPIDControlHistory[0]; // Set up pointer to controller history

controllerPID.errorHistory = &controllerPIDErrorHistory[0]; // Set up pointer to error history

controllerPID.preShift = (e.g. 5); // Normalization shift for error amplifier results in Q15 format

controllerPID.postShift = (e.g. 1); // Normalization shift for control loop results to peripheral

controllerPID.postScaler = (e.g. 2); // Normalization shift for control loop results to peripheral

controllerPID.minOutput = (e.g. min duty cycle); // Clamp value for minimum duty ratio

controllerPID.maxOutput = (e.g. max duty cycle); // Clamp value for maximum duty ratio

It's recommended to clean up the error-history and controller-history arrays before start-up using the following instruction:

SMPS_ControllerPIDInitialize(&controllerPID);

3) Calling the Controller

As soon as the coefficients have been loaded into their arrays, the controller can be called using the following instruction:

SMPS_ControllerPIDUpdate(&controllerPID,&ADCBUF0,controlReference,&PDC1)

This function call includes the pointer to the controller data structure, pointer of the input source register, control reference
value, and to the pointer to the output register.

1.4 Library Overview SMPS Control Library Help Using the PID Controller

 1-11

1

1.5 Modifying the Library
At release, the library includes one archive files:

1. libsmps_control_dspic33f-elf.a - To be used with dsPIC33F family of devices.

This archive file released with the library are built using the ELF type Object Module Format (OMF). The source (.s) files that
are used to build these archive files are also provided with the library, in the /src folder. These source files are provided for
reference and need not be used directly in a typical library usage scenario.

Users may also utilize the flexibility provided by the library to modify the source files and re-build their own archive files. In
order to help users to get started, a library project is included in the /mplabx folder of the library:

1. libsmps_control_dspic33f-elf.X - To be used with dsPIC33F family of devices.

These library projects assemble the source files from the /src folder using an assembly API file, and then archive the
assembled output object files into a binary archive. The binary archive is by default, saved in the
/mplabx/libsmps_control_dspic33f-elf.X/dist/default/production folder.

1.5 Modifying the Library SMPS Control Library Help

 1-12

1

1.6 Performance
The following table lists the approximate number of instruction cycles required to:

1. Save the arguments

2. Call into the library function

3. Return from the library function

Function Name Instruction Cycle Usage

(Minimum)

SMPS_Controller3P3ZInitialize 18

SMPS_Controller2P2ZInitialize 16

SMPS_ControllerPIDInitialize 15

SMPS_Controller3P3ZUpdate 63

SMPS_Controller2P2ZUpdate 58

SMPS_ControllerPIDUpdate 52

Note:

The above performance numbers were measured on the SMPS Control Library Version : 0.10 Release

1.6 Performance SMPS Control Library Help

 1-13

1

1.7 Register Usage
The register usage and handling behavior of the library functions are as described below.

1. Assembly implementation: Register W0 - W7 are caller saved. The calling function must preserve these values before the
library function call if their value is required subsequently from the library function call. The stack is a good place to
preserve these values.

2. Assembly implementation: Register W8 - W14 are saved by the library function if they are used within the library function.

3. Register W0 - W7 may be used for argument transmission.

4. Accumulator (A and B) registers are not saved by any of the library functions. If the calling function requires the
accumulator registers to be unchanged after the library function call, the calling function will have to save the accumulator
registers before the library function call.

5. Core Control Register (CORCON): certain library functions require CORCON register to be setup in a certain state in
order to operate correctly. Due to this requirement, these library functions save the CORCON register on the stack in the
beginning of the function and restore it before the function return. After saving the CORCON register, library functions
write to all bits of the CORCON register. Thus, for the brief duration when these library functions are executing, the state
of CORCON register may be different from its state as set by the function caller. This may temporarily change the CPU
core behavior with respect to exception processing latency, DO loop termination, CPU interrupt priority level and
DSP-engine behavior.

1.7 Register Usage SMPS Control Library Help

 1-14

1

1.8 Library Interface
Controller Initialization Functions

Name Description

SMPS_Controller3P3ZInitialize This function clears the SMPS_3P3Z_T data history structure arrays

SMPS_Controller2P2ZInitialize This function clears the SMPS_2P2Z_T data structure arrays

SMPS_ControllerPIDInitialize This function clears the SMPS_PID_T data structure arrays

Types

Name Description

SMPS_3P3Z_T Data type for the 3-pole 3-zero (3P3Z) controller

SMPS_2P2Z_T Data type for the 2-pole 2-zero (2P2Z) controller

SMPS_PID_T Data type for the PID controller

Description

This section describes the functions and type defines provided by the SMPS Control library.

1.8.1 Types

The library functions require input and output data to be organized in structures of specific types. The type defines,
described in this section, are provided in the smps_control.h file.

Structures

Name Description

SMPS_3P3Z_T Data type for the 3-pole 3-zero (3P3Z) controller

SMPS_2P2Z_T Data type for the 2-pole 2-zero (2P2Z) controller

SMPS_PID_T Data type for the PID controller

1.8.1.1 SMPS_3P3Z_T Structure
C

typedef struct {
 int16_t* aCoefficients;
 int16_t* bCoefficients;
 int16_t* controlHistory;
 int16_t* errorHistory;
 uint16_t preShift;
 int16_t postShift;
 int16_t postScaler;
 uint16_t minOutput;
 uint16_t maxOutput;
} SMPS_3P3Z_T;

Description

Data type for the 3-pole 3-zero (3P3Z) controller

The 3P3Z controller is the digital implementation of the analog type III controller. This is a filter which generates a
compensator characteristic considering three poles and three zeros. This controller requires four feedback error multiplied by
their associated coefficients plus the three latest controller output values multiplied by their associated coefficients along the
delay line to provide proper compensation of the power converter. The coefficients are determined externally using

1.8 Library Interface SMPS Control Library Help Types

 1-15

1

simulation tools.

The SMPS_3P3Z_T data structure contains a pointer to derived coefficients in X-space and pointer to error/control history
samples in Y-space. User must declare variables for the derived coefficients and the error history samples.

The abCoefficients referenced by the SMPS_3P3Z_T data structure are derived from the coefficients B0-B3 plus A1-A3.
These will be declared in external arrays. The SMPS_3P3Z_T data structure just holds pointers to these arrays.

The coefficients will be determined by simulation tools, which output is given as floating point numbers. These numbers will
be copied into the declared arrays after they have been converted into 16-bit integer numbers.

Members

Members Description

int16_t* aCoefficients; Pointer to A coefficients located in X-space

int16_t* bCoefficients; Pointer to B coefficients located in X-space

int16_t* controlHistory; Pointer to 3 delay-line samples located in Y-space with the first sample being
the most recent

int16_t* errorHistory; Pointer to 4 delay-line samples located in Y-space with the first sample being
the most recent

uint16_t preShift; Normalization from ADC-resolution to Q15 (R/W)

int16_t postShift; Normalization bit-shift from Q15 to PWM register resolution (R/W)

int16_t postScaler; Controller output post-scaler (R/W)

uint16_t minOutput; Minimum output value used for clamping (R/W)

uint16_t maxOutput; Maximum output value used for clamping (R/W)

1.8.1.2 SMPS_2P2Z_T Structure
C

typedef struct {
 int16_t* aCoefficients;
 int16_t* bCoefficients;
 int16_t* controlHistory;
 int16_t* errorHistory;
 uint16_t preShift;
 int16_t postShift;
 int16_t postScaler;
 uint16_t minOutput;
 uint16_t maxOutput;
} SMPS_2P2Z_T;

Description

Data type for the 2-pole 2-zero (2P2Z) controller

The 2P2Z controller is the digital implementation of the analog type II controller. This is a filter which generates a
compensator characteristic considering two poles and two zeros. This controller requires three feedback error multiplied by
their associated coefficients plus the two latest controller output values multiplied by their associated coefficients along the
delay line to provide proper compensation of the power converter. The coefficients are determined externally using
simulation tools.

The SMPS_2P2Z_T data structure contains a pointer to derived coefficients in X-space and pointer to error/control history
samples in Y-space. User must declare variables for the derived coefficients and the error history samples.

The abCoefficients referenced by the SMPS_2P2Z_T data structure are derived from the coefficients B0-B2 plus A1-A2.
These will be declared in external arrays. The SMPS_2P2Z_T data structure and just holds pointers to these arrays.

The coefficients will be determined by simulation tools, which output is given as floating point numbers. These numbers will
be copied into the declared arrays after they have been converted into 16-bit integer numbers.

1.8 Library Interface SMPS Control Library Help Types

 1-16

1

Members

Members Description

int16_t* aCoefficients; Pointer to A coefficients located in X-space

int16_t* bCoefficients; Pointer to B coefficients located in X-space

int16_t* controlHistory; Pointer to 2 delay-line samples located in Y-space with the first sample being
the most recent

int16_t* errorHistory; Pointer to 3 delay-line samples located in Y-space with the first sample being
the most recent

uint16_t preShift; Normalization from ADC-resolution to Q15 (R/W)

int16_t postShift; Normalization bit-shift from Q15 to PWM register resolution (R/W)

int16_t postScaler; Controller output post-scaler (R/W)

uint16_t minOutput; Minimum output value used for clamping (R/W)

uint16_t maxOutput; Maximum output value used for clamping (R/W)

1.8.1.3 SMPS_PID_T Structure
C

typedef struct {
 int16_t* abcCoefficients;
 int16_t* errorHistory;
 int16_t controlHistory;
 int16_t postScaler;
 int16_t preShift;
 int16_t postShift;
 uint16_t minOutput;
 uint16_t maxOutput;
} SMPS_PID_T;

Description

Data type for the PID controller

Data type for the Proportional Integral Derivative (PID) controller

This digital implementation of a PID controller is a filter which generates a compensator characteristic considering the values
of the coefficients KA, KB, KC these coefficients will determine the converter's frequency response. These coefficients are
determined externally using simulation tools.

This function call includes the pointer to the controller data structure, pointer of the input source register, control reference
value, and to the pointer to the output register.

Members

Members Description

int16_t* abcCoefficients; Pointer to A, B & C coefficients located in X-space These coefficients are
derived from the PID gain values - Kp, Ki and Kd

int16_t* errorHistory; Pointer to 3 delay-line samples located in Y-space with the first sample being
the most recent

int16_t controlHistory; Stores the most recent controller output (n-1)

int16_t postScaler; PID basic Coefficient scaling Factor

int16_t preShift; Normalization from ADC-resolution to Q15 (R/W)

int16_t postShift; Normalization from DSP to PWM register

uint16_t minOutput; Minimum output value used for clamping

uint16_t maxOutput; Maximum output value used for clamping

1.8 Library Interface SMPS Control Library Help Controller Initialization Functions

 1-17

1

1.8.2 Controller Initialization Functions

This sections lists and describes the initialization functions used in the SMPS Control Library.

Functions

Name Description

SMPS_Controller3P3ZInitialize This function clears the SMPS_3P3Z_T data history structure arrays

SMPS_Controller2P2ZInitialize This function clears the SMPS_2P2Z_T data structure arrays

SMPS_ControllerPIDInitialize This function clears the SMPS_PID_T data structure arrays

1.8.2.1 SMPS_Controller3P3ZInitialize Function
C

void SMPS_Controller3P3ZInitialize(
 SMPS_3P3Z_T * controllerData
);

Description

This function clears the SMPS_3P3Z_T data history structure arrays. It's recommended to clear the error-history and
controller-history arrays before 3P3Z controller implementation.

Preconditions

None.

Parameters

Parameters Description

SMPS_3P3Z_T * This parameter is a pointer to a SMPS_3P3Z_T type structure

Returns

Void.

Example

 SMPS_3P3Z_T controller3P3Z;
SMPS_3P3ZInitialize(&controller3P3Z);

1.8.2.2 SMPS_Controller2P2ZInitialize Function
C

void SMPS_Controller2P2ZInitialize(
 SMPS_2P2Z_T * controllerData
);

Description

This function clears the SMPS_2P2Z_T data history structure arrays. It's recommended to clear the error-history and
controller-history arrays before 2P2Z controller implementation.

Preconditions

None.

Parameters

Parameters Description

SMPS_2P2Z_T* This parameter is a pointer to a SMPS_2P2Z_T type structure

1.8 Library Interface SMPS Control Library Help Controller Initialization Functions

 1-18

1

Returns

void

Example

 SMPS_2P2Z_T controller2P2Z;
SMPS_Controller2P2ZUpdateInitialize(&controller2P2Z);

1.8.2.3 SMPS_ControllerPIDInitialize Function
C

void SMPS_ControllerPIDInitialize(
 SMPS_PID_T * controllerData
);

Description

This function clears the SMPS_PID_T data history structure arrays. It's recommended to clear the error-history and
controller-history arrays before PID controller implementation.

Preconditions

None.

Parameters

Parameters Description

SMPS_PID_T* This parameter is a pointer to a SMPS_PID_T type structure

Returns

void

Example

 SMPS_PID_T controllerPID;
SMPS_ControllerPIDUpdateInitialize(&controllerPID);

1.8.3 Controller Functions

Functions

Name Description

SMPS_Controller3P3ZUpdate This function calls the SMPS_Controller3P3ZUpdate controller

SMPS_Controller2P2ZUpdate This function calls the SMPS_Controller2P2ZUpdate controller

SMPS_ControllerPIDUpdate This function calls the SMPS_ControllerPIDUpdate controller

Description

This sections lists and describes the function calls for each of the controllers included in the SMPS Control Library.

1.8.3.1 SMPS_Controller3P3ZUpdate Function
C

void SMPS_Controller3P3ZUpdate(
 SMPS_3P3Z_T* controllerData,
 volatile uint16_t* controllerInputRegister,
 int16_t reference,
 volatile uint16_t* controllerOutputRegister
);

1.8 Library Interface SMPS Control Library Help Controller Functions

 1-19

1

Description

This function updates the 3P3Z controller and can be called as soon as the coefficients have been loaded into their arrays.

Preconditions

Before the controller can be used, it has to be initialized. The data structure has to be filled by copying the pointers to the
coefficient, error and controller history arrays to the structure and the physical clamping limits of the output value. In the
function call pointers to the Input source register, reference value, and pointer to the output register need to be called.

Parameters

Parameters Description

SMPS_3P3Z_T * controllerData This parameter is a pointer to a SMPS_3P3Z_T type structure

uint16_t* controllerInputRegister This parameter is a pointer to the input source register or variable being tracked
by the 3P3Z (e.g. ADCBUF0).

int16_t reference This parameter is a signed integer value that will be used by the controller as
the feedback reference or set-point.

uint16_t* controllerOutputRegister This parameter is a pointer to the Control loop target register of the calculated
result(e.g. PDC1).

Returns

void

Example

 int16_t controlReference;
SMPS_3P3Z_T controller3P3Z;
SMPS_Controller3P3ZUpdate(&controller3P3Z,&ADCBUF0,controlReference,&PDC1)

1.8.3.2 SMPS_Controller2P2ZUpdate Function
C

void SMPS_Controller2P2ZUpdate(
 SMPS_2P2Z_T* controllerData,
 volatile uint16_t* controllerInputRegister,
 int16_t reference,
 volatile uint16_t* controllerOutputRegister
);

Description

This function updates the 2P2Z controller and can be called as soon as the coefficients have been loaded into their arrays.

Preconditions

Before the controller can be used, it has to be initialized. The data structure has to be filled by copying the pointers to the
coefficient, error and controller history arrays to the structure and the physical clamping limits of the output value. In the
function call pointers to the Input source register, reference value, and pointer to the output register need to be called.

Parameters

Parameters Description

SMPS_2P2Z_T * controllerData This parameter is a pointer to a SMPS_2P2Z_T type structure

uint16_t* controllerInputRegister This parameter is a pointer to the input source register or variable being tracked
by the 2P2Z (e.g. ADCBUF0).

int16_t reference This parameter is a signed integer value that will be used by the controller as
the feedback reference or set-point.

uint16_t* controllerOutputRegister This parameter is a pointer to the Control loop target register of the calculated
result(e.g. PDC1).

Returns

void

1.8 Library Interface SMPS Control Library Help Controller Functions

 1-20

1

Example

 int16_t controlReference;
SMPS_2P2Z_T controller2P2Z;
SMPS_Controller2P2ZUpdate(&controller2P2Z,&ADCBUF0,controlReference,&PDC1)

1.8.3.3 SMPS_ControllerPIDUpdate Function
C

void SMPS_ControllerPIDUpdate(
 SMPS_PID_T* controllerData,
 volatile uint16_t* controllerInputRegister,
 int16_t reference,
 volatile uint16_t* controllerOutputRegister
);

Description

This function updates the PID controller and can be called as soon as the coefficients have been loaded into their arrays.

Preconditions

Before the controller can be used, it has to be initialized. The data structure has to be filled by copying the pointers to the
coefficient, error and controller history arrays to the structure and the physical clamping limits of the output value. In the
function call pointers to the Input source register, reference value, and pointer to the output register need to be called.

Parameters

Parameters Description

SMPS_PID_T * controllerData This parameter is a pointer to a SMPS_PID_T type structure

uint16_t* controllerInputRegister This parameter is a pointer to the input source register or variable being tracked
by the PID (e.g. ADCBUF0).

int16_t reference This parameter is a signed integer value that will be used by the controller as
the feedback reference or set-point.

uint16_t* controllerOutputRegister This parameter is a pointer to the Control loop target register of the calculated
result(e.g. PDC1).

Returns

void

Example

 int16_t controlReference;
SMPS_PID_T controllerPID;
SMPS_ControllerPIDUpdate(&controllerPID,&ADCBUF0,controlReference,&PDC1)

1.8 Library Interface SMPS Control Library Help Controller Functions

 1-21

1

1.9 Files
Files

Name Description

smps_control.h This header file lists the interfaces used by the Switch Mode Power Supply
compensator library.

1.9.1 smps_control.h

SMPS Control (Compensator) library interface header file

This header file lists the type defines for structures used by the SMPS library. Library function definitions are also listed
along with information regarding the arguments of each library function.

Functions

Name Description

SMPS_Controller2P2ZInitialize This function clears the SMPS_2P2Z_T data structure arrays

SMPS_Controller2P2ZUpdate This function calls the SMPS_Controller2P2ZUpdate controller

SMPS_Controller3P3ZInitialize This function clears the SMPS_3P3Z_T data history structure arrays

SMPS_Controller3P3ZUpdate This function calls the SMPS_Controller3P3ZUpdate controller

SMPS_ControllerPIDInitialize This function clears the SMPS_PID_T data structure arrays

SMPS_ControllerPIDUpdate This function calls the SMPS_ControllerPIDUpdate controller

Structures

Name Description

SMPS_2P2Z_T Data type for the 2-pole 2-zero (2P2Z) controller

SMPS_3P3Z_T Data type for the 3-pole 3-zero (3P3Z) controller

SMPS_PID_T Data type for the PID controller

File Name

smps_interfaces.h

Company

Microchip Technology Inc.

1.9 Files SMPS Control Library Help smps_control.h

 1-22

1

Index

C
Controller Functions 1-19

Controller Initialization Functions 1-18

F
Files 1-22

I
Introduction 1-2

L
Library Interface 1-15

Library Overview 1-5

Library Sections 1-5

Library Usage Model 1-5

M
Modifying the Library 1-12

P
Performance 1-13

R
Register Usage 1-14

Release Notes 1-3

S
SMPS Control Library 1-1

SMPS_2P2Z_T structure 1-16

SMPS_3P3Z_T structure 1-15

smps_control.h 1-22

SMPS_Controller2P2ZInitialize function 1-18

SMPS_Controller2P2ZUpdate function 1-20

SMPS_Controller3P3ZInitialize function 1-18

SMPS_Controller3P3ZUpdate function 1-19

SMPS_ControllerPIDInitialize function 1-19

SMPS_ControllerPIDUpdate function 1-21

SMPS_PID_T structure 1-17

SW License Agreement 1-4

T
Types 1-15

U
Using the 2P2Z Controller 1-9

Using the 3P3Z Controller 1-7

Using the PID Controller 1-10

2 SMPS Control Library Help

 a

	SMPS Control Library Help
	 Table of Contents
	1 SMPS Control Library
	1.1 Introduction
	1.2 Release Notes
	1.3 SW License Agreement
	1.4 Library Overview
	1.4.1 Library Sections
	1.4.2 Library Usage Model
	1.4.3 Using the 3P3Z Controller
	1.4.4 Using the 2P2Z Controller
	1.4.5 Using the PID Controller

	1.5 Modifying the Library
	1.6 Performance
	1.7 Register Usage
	1.8 Library Interface
	1.8.1 Types
	1.8.1.1 SMPS_3P3Z_T Structure
	1.8.1.2 SMPS_2P2Z_T Structure
	1.8.1.3 SMPS_PID_T Structure

	1.8.2 Controller Initialization Functions
	1.8.2.1 SMPS_Controller3P3ZInitialize Function
	1.8.2.2 SMPS_Controller2P2ZInitialize Function
	1.8.2.3 SMPS_ControllerPIDInitialize Function

	1.8.3 Controller Functions
	1.8.3.1 SMPS_Controller3P3ZUpdate Function
	1.8.3.2 SMPS_Controller2P2ZUpdate Function
	1.8.3.3 SMPS_ControllerPIDUpdate Function

	1.9 Files
	1.9.1 smps_control.h

	Index

